Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 15(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667423

RESUMEN

Hermetia illucens has received a lot of attention as its larval stage can grow on organic substrates, even those that are decomposing. Black soldier fly breeding provides a variety of valuable products, including frass, a mixture of larval excrements, larval exuviae, and leftover feedstock, that can be used as a fertilizer in agriculture. Organic fertilizers, such as frass, bringing beneficial bacteria and organic materials into the soil, improves its health and fertility. This comprehensive review delves into a comparative analysis of frass derived from larvae fed on different substrates. The composition of micro- and macro-nutrients, pH levels, organic matter content, electrical conductivity, moisture levels, and the proportion of dry matter are under consideration. The effect of different feeding substrates on the presence of potentially beneficial bacteria for plant growth within the frass is also reported. A critical feature examined in this review is the post-application beneficial impacts of frass on crops, highlighting the agricultural benefits and drawbacks of introducing Hermetia illucens frass into cultivation operations. One notable feature of this review is the categorization of the crops studied into distinct groups, which is useful to simplify comparisons in future research.

2.
Appl Microbiol Biotechnol ; 108(1): 167, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261012

RESUMEN

As the problem of antimicrobial resistance is constantly increasing, there is a renewed interest in antimicrobial products derived from natural sources, particularly obtained from innovative and eco-friendly materials. Insect lipids, due to their fatty acid composition, can be classified as natural antimicrobial compounds. In order to assess the antibacterial efficacy of Hermetia illucens lipids, we extracted this component from the larval stage, fed on different substrates and we characterized it. Moreover, we analyzed the fatty acid composition of the feeding substrate, to determine if and how it could affect the antimicrobial activity of the lipid component. The antimicrobial activity was evaluated against Gram-positive Micrococcus flavus and Gram-negative bacteria Escherichia coli. Analyzing the fatty acid profiles of larval lipids that showed activity against the two bacterial strains, we detected significant differences for C4:0, C10:0, C16:1, C18:3 n3 (ALA), and C20:1. The strongest antimicrobial activity was verified against Micrococcus flavus by lipids extracted from larvae reared on strawberry, tangerine, and fresh manure substrates, with growth inhibition zones ranged from 1.38 to 1.51 mm, while only the rearing on manure showed the effect against Escherichia coli. Notably, the fatty acid profile of H. illucens seems to not be really influenced by the substrate fatty acid profile, except for C18:0 and C18:2 CIS n6 (LA). This implies that other factors, such as the rearing conditions, larval development stages, and other nutrients such as carbohydrates, affect the amount of fatty acids in insects. KEY POINTS: • Feeding substrates influence larval lipids and fatty acids (FA) • Generally, there is no direct correlation between substrate FAs and the same larvae FAs • Specific FAs influence more the antimicrobial effect of BSF lipids.


Asunto(s)
Dípteros , Estiércol , Micrococcus , Animales , Larva , Escherichia coli , Ácidos Grasos , Micrococcus luteus
3.
Medicina (Kaunas) ; 60(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256423

RESUMEN

The study of migraine is based on the complexity of the pathology, both at the pathophysiological and epidemiological levels. Although it affects more than a billion people worldwide, it is often underestimated and underreported by patients. Migraine must not be confused with a simple headache; it is a serious and disabling disease that causes considerable limitations in the daily life of afflicted people, including social, work, and emotional effects. Therefore, it causes a daily state of suffering and discomfort. It is important to point out that this pathology not only has a decisive impact on the quality of life of those who suffer from it but also on their families and, more generally, on society as a whole. The clinical picture of migraine is complex, with debilitating unilateral or bilateral head pain, and is often associated with characteristic symptoms such as nausea, vomiting, photophobia, and phonophobia. Hormonal, environmental, psychological, dietary, or other factors can trigger it. The present review focuses on the analysis of the physiopathological and pharmacological aspects of migraine, up to the correct dietary approach, with specific nutritional interventions aimed at modulating the symptoms. Based on the symptoms that the patient experiences, targeted and specific therapy is chosen to reduce the frequency and severity of migraine attacks. Specifically, the role of calcitonin gene-related peptide (CGRP) in the pathogenesis of migraine is analyzed, along with the drugs that effectively target the corresponding receptor. Particularly, CGRP receptor antagonists (gepants) are very effective drugs in the treatment of migraine, given their high diffusion in the brain. Moreover, following a ketogenic diet for only one or two months has been demonstrated to reduce migraine attacks. In this review, we highlight the diverse facets of migraine, from its physiopathological and pharmacological aspects to prevention and therapy.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Dieta Cetogénica , Trastornos Migrañosos , Humanos , Péptido Relacionado con Gen de Calcitonina/genética , Cefalea , Trastornos Migrañosos/tratamiento farmacológico , Calidad de Vida , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico
4.
Arthropod Struct Dev ; 78: 101325, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176179

RESUMEN

The parasitoid Torymus sinensis (Hymenoptera: Torymidae) has been successfully used in Italy since 2005 for biological control of the invasive cynipid Dryocosmus kuriphilus (Hymenoptera: Cynipidae), highly destructive for the economically relevant Castanea sativa (Fagales: Fagaceae). In order to investigate the morphological aspects related to sensorial behavior, a fine morphology study of the antennae and their sensilla was conducted by scanning electron microscopy on both sexes of T. sinensis. The antennae, composed of a scape, a pedicel and a flagellum with ten flagellomeres, had chaetic sensilla of six subtypes, placoid sensilla of three subtypes, trichoid sensilla, sensilla with a roundish grooved tip, and coeloconic sensilla. The chaetic sensilla of the first three subtypes were found in the scape and in the pedicel, and those of the last three subtypes, together with trichoid, roundish grooved tip and coeloconic sensilla, were found only on flagellomeres. Sexual dimorphism was detected in the morphology of the proper pedicel and the flagellum, and in the presence and distribution of the sensilla and their subtypes. The morphological aspects of the antenna of T. sinensis and of its sensilla were compared with those found in the family Torymidae and in other families of the extremely diverse superfamily Chalcidoidea.


Asunto(s)
Himenópteros , Femenino , Masculino , Animales , Microscopía Electrónica de Rastreo , Sensilos/anatomía & histología , Membrana Celular , Caracteres Sexuales , Antenas de Artrópodos
5.
Biomolecules ; 13(10)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37892230

RESUMEN

The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.


Asunto(s)
Mariposas Nocturnas , Poríferos , Avispas , Animales , Transcriptoma , Proteómica , Larva
6.
Cancers (Basel) ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296944

RESUMEN

In this review, we summarize the most used natural products as useful adjuvants in BC by clarifying how these products may play a critical role in the prevention, treatment and progression of this disease. BC is the leading cancer, in terms of incidence, that affects women. The epidemiology and pathophysiology of BC were widely reported. Inflammation and cancer are known to influence each other in several tumors. In the case of BC, the inflammatory component precedes the development of the neoplasm through a slowly increasing and prolonged inflammation that also favors its growth. BC therapy involves a multidisciplinary approach comprising surgery, radiotherapy and chemotherapy. There are numerous observations that showed that the effects of some natural substances, which, in integration with the classic protocols, can be used not only for prevention or integration in order to prevent recurrences and induce a state of chemoquiescence but also as chemo- and radiosensitizers during classic therapy.

7.
Insects ; 14(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37233092

RESUMEN

Antimicrobial peptides (AMPs) are a chemically and structurally heterogeneous family of molecules produced by a large variety of living organisms, whose expression is predominant in the sites most exposed to microbial invasion. One of the richest natural sources of AMPs is insects which, over the course of their very long evolutionary history, have adapted to numerous and different habitats by developing a powerful innate immune system that has allowed them to survive but also to assert themselves in the new environment. Recently, due to the increase in antibiotic-resistant bacterial strains, interest in AMPs has risen. In this work, we detected AMPs in the hemolymph of Hermetia illucens (Diptera, Stratiomyidae) larvae, following infection with Escherichia coli (Gram negative) or Micrococcus flavus (Gram positive) and from uninfected larvae. Peptide component, isolated via organic solvent precipitation, was analyzed by microbiological techniques. Subsequent mass spectrometry analysis allowed us to specifically identify peptides expressed in basal condition and peptides differentially expressed after bacterial challenge. We identified 33 AMPs in all the analyzed samples, of which 13 are specifically stimulated by Gram negative and/or Gram positive bacterial challenge. AMPs mostly expressed after bacterial challenge could be responsible for a more specific activity.

8.
Sci Rep ; 13(1): 7030, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120448

RESUMEN

Chitosan was produced from Hermetia illucens pupal exuviae by heterogeneous and homogeneous deacetylation. Tomato fruits (Solanum lycopersicum), that are one of the most grown and consumed food throughout the world, were coated with 0.5 and 1% chitosan, applied by dipping or spraying, and stored at room temperature or 4 °C, for a storage period of 30 days. Statistical analysis give different results depending on the analysed parameters: heterogeneous chitosan, indeed, had a better effect than the homogenous one in maintaining more stable physico-chemical parameters, while the homogenous chitosan improved the total phenols, flavonoids and antioxidant activity. Chitosan coatings applied by spraying were more effective in all the analyses. Chitosan derived from H. illucens always performed similarly to the commercial chitosan. However, a general better performance of insect-derived chitosan on the concentration of phenolics and flavonoids, and the antioxidant activity was observed as compared to the commercial one. Chitosan coating has already been successfully used for preservation of fresh fruits, as alternative to synthetic polymers, but this is the first investigation of chitosan produced from an insect for this application. These preliminary results are encouraging regarding the validation of the insect H. illucens as a source of chitosan.


Asunto(s)
Quitosano , Dípteros , Solanum lycopersicum , Animales , Antioxidantes/farmacología , Antioxidantes/análisis , Conservación de Alimentos/métodos , Quitosano/farmacología , Flavonoides/análisis , Frutas/química
10.
Insect Sci ; 30(4): 991-1010, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36433821

RESUMEN

Bioconversion is a biological process by which organic materials are converted into products with higher biological and commercial value. During its larval stage the black soldier fly Hermetia illucens is extremely voracious and can feed on a wide variety of organic materials. To study the impact of different fruit byproducts on the insect's growth, final larval biomass, substrate reduction, bioconversion parameters, and larval nutritional composition, 10 000 black soldier fly larvae (BSFL) were reared on 7.0 kg of one of three substrates (strawberry, tangerine, or orange) or on a standard diet as a control. The results highlight that BSFL can successfully feed and grow on each of these diets, though their development time, growth rate, and final biomass were differently impacted by the substrates, with strawberry being the most suitable. The lipid and protein contents of BSFL were similar among larvae fed on different substrates; however, major differences were detected in ash, micronutrient, fiber, fatty acid, and amino acid contents. Overall, the results indicate that fruit waste management through the BSFL bioconversion process represents a commercially promising resource for regional and national agrifood companies. Our study offers new perspectives for sustainable and environmentally friendly industrial development by which fruit byproducts or waste might be disposed of or unconventionally enhanced to create secondary products of high biological and economic value, including BSFL biomass as animal feed or, in perspective, as alternative protein source for human nutrition.


Asunto(s)
Dípteros , Humanos , Animales , Frutas , Larva , Dieta , Alimentación Animal/análisis
11.
iScience ; 26(12): 108576, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38162020

RESUMEN

The ability of chitosan produced from pupal exuviae of Hermetia illucens to retard the decay of the local strawberry (Fragaria x ananassa) cultivar Melissa was investigated for the first time in this paper. The results demonstrated the effectiveness of insect chitosan compared to the commercial polymer in preserving and enhancing, at the same time, some physicochemical parameters (weight loss, pH and soluble solids content) and nutraceutical properties (total polyphenol content, total flavonoid content and total antioxidant activity) of strawberries stored at RT, 4°C and at mixed storage conditions (4°C + RT). Moreover, chitosan from H. illucens was also effective in reducing fungal decay and improving fruit shelf life. The obtained results confirm that insect chitosan, particularly deriving from H. illucens pupal exuviae, can be a viable alternative to crustacean one in safeguarding postharvest fruits.

12.
Curr Pharm Des ; 28(35): 2856-2866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980058

RESUMEN

Antimicrobial peptides (AMPs) are small molecules belonging to innate immunity that act against bacteria, fungi, and viruses. With the spread of bacterial strains resistant to current antibiotics, the scientific community is deeply committed to the identification and study of new molecules with putative antimicrobial activity. In this context, AMPs represent a promising alternative to overcome this problem. To date, several databases have been built up to provide information on the AMPs identified so far and their physico-chemical properties. Moreover, several tools have been developed and are available online that allow to highlight sequences with putative antimicrobial activity and predict their biological activity. These tools can also predict the secondary and tertiary structures of putative AMPs, thus allowing molecular docking studies to evaluate potential interactions with proteins/ligands. In this paper, we focused our attention on online available AMPs databases and computational tools for biological activity and tertiary structure prediction, highlighting some papers in which the computational approach was successfully used. As the identification of peptides starts from the analysis of a large amount of data, we show that bioinformatics predictions are the best starting point for the identification of new sequences of interest that can be subsequently produced and tested.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Humanos , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Bacterias , Resistencia a Múltiples Medicamentos , Simulación del Acoplamiento Molecular , Farmacorresistencia Bacteriana Múltiple
13.
Sci Rep ; 12(1): 8084, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577828

RESUMEN

Growing antimicrobial resistance has prompted researchers to identify new natural molecules with antimicrobial potential. In this perspective, attention has been focused on biopolymers that could also be functional in the medical field. Chitin is the second most abundant biopolymer on Earth and with its deacetylated derivative, chitosan, has several applications in biomedical and pharmaceutical fields. Currently, the main source of chitin is the crustacean exoskeleton, but the growing demand for these polymers on the market has led to search for alternative sources. Among these, insects, and in particular the bioconverter Hermetia illucens, is one of the most bred. Chitin can be extracted from larvae, pupal exuviae and dead adults of H. illucens, by applying chemical methods, and converted into chitosan. Fourier-transformed infrared spectroscopy confirmed the identity of the chitosan produced from H. illucens and its structural similarity to commercial polymer. Recently, studies showed that chitosan has intrinsic antimicrobial activity. This is the first research that investigated the antibacterial activity of chitosan produced from the three developmental stages of H. illucens through qualitative and quantitative analysis, agar diffusion tests and microdilution assays, respectively. Our results showed the antimicrobial capacity of chitosan of H. illucens, opening new perspectives for its use in the biological area.


Asunto(s)
Antiinfecciosos , Quitosano , Dípteros , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopolímeros , Quitina/química , Quitosano/química , Quitosano/farmacología , Insectos
14.
Sci Rep ; 12(1): 6613, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459772

RESUMEN

Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.


Asunto(s)
Quitosano , Dípteros , Animales , Quitina/química , Quitosano/química , Insectos , Larva , Pupa
15.
Environ Monit Assess ; 194(5): 375, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35437645

RESUMEN

Vulnerability to land degradation in Mediterranean Europe increased substantially in the last decades because of the latent interplay of climate and land-use change, progressive soil deterioration, and rising human pressure. The present study provides a quantitative evaluation of the intrinsic change over time in the level of vulnerability to land degradation over a representative Mediterranean area (Italy) using a normative indicator, the percentage of land classified as 'critical' in total area. This indicator derives from a spatially explicit elaboration of the ESA (Environmental Sensitive Area) Index (ESAI), a standard methodology of land classification considering different levels of vulnerability to degradation at a particularly refined spatial scale (1 km2). This indicator was calculated over a relatively long time interval (1960-2010) and aggregated at the geographical scale of administrative regions in Italy, a relevant domain in the implementation of the National Action Plan (NAP) to combat desertification and the adoption of individual Regional Action Plans (RAP). A significant - but spatially heterogeneous - increase in 'critical' land was observed in Italy, leading to distinctive dynamics in northern/central regions and southern regions. Climate aridity and anthropogenic pressure leveraged the sudden vulnerability in some marginal land of Northern Italy - a region classified as unexposed to desertification risk - paralleling the levels observed in some districts of Southern Italy, an 'affected' region to desertification risk. These results suggest a re-thinking of mitigation policies proposed in the Italian NAP and a redesign of the RAPs toward place-specific adaptation measures, especially in the 'less exposed' Northern Italian region.


Asunto(s)
Conservación de los Recursos Naturales , Monitoreo del Ambiente , Clima , Monitoreo del Ambiente/métodos , Humanos , Políticas , Suelo
16.
Nanotechnology ; 33(20)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35114654

RESUMEN

Organic decomposition processes, involving the breakdown of complex molecules such as carbohydrates, proteins and fats, release small chemicals known as volatile organic compounds (VOCs), smelly even at very low concentrations, but not all readily detectable by vertebrates. Many of these compounds are instead detected by insects, mostly by saprophytic species, for which long-range orientation towards organic decomposition matter is crucial. In the present work the detection of aldehydes, as an important measure of lipid oxidation, has been possible exploiting the molecular machinery underlying odour recognition inHermetia illucens(Diptera: Stratiomyidae). This voracious scavenger insect is of interest due to its outstanding capacity in bioconversion of organic waste, colonizing very diverse environments due to the ability of sensing a wide range of chemical compounds that influence the choice of substrates for ovideposition. A variety of soluble odorant binding proteins (OBPs) that may function as carriers of hydrophobic molecules from the air-water interface in the antenna of the insect to the receptors were identified, characterised and expressed. An OBP-based nanobiosensor prototype was realized using selected OBPs as sensing layers for the development of an array of quartz crystal microbalances (QCMs) for vapour phase detection of selected compounds at room temperature. QCMs coated with four recombinantH. illucensOBPs (HillOBPs) were exposed to a wide range of VOCs indicative of organic decomposition, showing a high sensitivity for the detection of three chemical compounds belonging to the class of aldehydes and one short-chain fatty acid. The possibility of using biomolecules capable of binding small ligands as reversible gas sensors has been confirmed, greatly expanding the state-of the-art in gas sensing technology.


Asunto(s)
Aldehídos/análisis , Técnicas Biosensibles/métodos , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , Compuestos Orgánicos Volátiles/análisis , Aldehídos/metabolismo , Animales , Dípteros/metabolismo , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas de Insectos/genética , Cinética , Límite de Detección , Odorantes/análisis , Tecnicas de Microbalanza del Cristal de Cuarzo , Receptores Odorantes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
17.
Insects ; 13(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35206718

RESUMEN

The endophagous parasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) of the larval stages of the tobacco budworm Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae) injects the egg, the venom, the calyx fluid, which includes a Polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian Proteins (OPs) into the host body during oviposition. The host metabolism and immune system are disrupted prematurely shortly after parasitization by the combined action of the TnBV, venom, and OPs. OPs are involved in the early suppression of host immune response, before TnBV infects and expresses its genes in the host tissues. In this work, we evaluated the effect of HPLC fractions deriving from in toto OPs. Two fractions caused a reduction in hemocyte viability and were subsequently tested to detect changes in hemocyte morphology and functionality. The two fractions provoked severe oxidative stress and actin cytoskeleton disruption, which might explain the high rate of hemocyte mortality, loss of hemocyte functioning, and hence the host's reduced hemocyte encapsulation ability. Moreover, through a transcriptome and proteomic approach we identify the proteins of the two fractions: eight proteins were identified that might be involved in the observed host hemocyte changes. Our findings will contribute to a better understanding of the secreted ovarian components and their role in parasitoid wasp strategy for evading host immune responses.

18.
Insects ; 12(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34564254

RESUMEN

The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis.

19.
Toxins (Basel) ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564621

RESUMEN

Glycoalkaloids, secondary metabolites abundant in plants belonging to the Solanaceae family, may affect the physiology of insect pests. This paper presents original results dealing with the influence of a crude extract obtained from Solanum nigrum unripe berries and its main constituent, solasonine, on the physiology of Galleria mellonella (Lepidoptera) that can be used as an alternative bioinsecticide. G. mellonella IV instar larvae were treated with S. nigrum extract and solasonine at different concentrations. The effects of extract and solasonine were evaluated analyzing changes in carbohydrate and amino acid composition in hemolymph by RP-HPLC and in the ultrastructure of the fat body cells by TEM. Both extract and solasonine changed the level of hemolymph metabolites and the ultrastructure of the fat body and the midgut cells. In particular, the extract increased the erythritol level in the hemolymph compared to control, enlarged the intracellular space in fat body cells, and decreased cytoplasm and lipid droplets electron density. The solasonine, tested with three concentrations, caused the decrease of cytoplasm electron density in both fat body and midgut cells. Obtained results highlighted the disturbance of the midgut and the fat body due to glycoalkaloids and the potential role of hemolymph ingredients in its detoxification. These findings suggest a possible application of glycoalkaloids as a natural insecticide in the pest control of G. mellonella larvae.


Asunto(s)
Cuerpo Adiposo/efectos de los fármacos , Hemolinfa/efectos de los fármacos , Insecticidas , Mariposas Nocturnas , Extractos Vegetales , Alcaloides Solanáceos , Solanum nigrum/química , Animales , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/ultraestructura , Cuerpo Adiposo/ultraestructura , Hemolinfa/metabolismo , Control de Insectos , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/ultraestructura , Microscopía Electrónica de Transmisión , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/ultraestructura
20.
Biomolecules ; 11(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439761

RESUMEN

Global warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up- and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS-mediated photodamage.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Proteómica/métodos , Especies Reactivas de Oxígeno , Estrés Fisiológico , Regiones Antárticas , Antioxidantes , Pared Celular , Cromatografía Liquida , Biología Computacional , Calentamiento Global , Oxidación-Reducción , Estrés Oxidativo , Fotosíntesis , Isoformas de Proteínas , Espectrometría de Masas en Tándem , Temperatura , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...